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Summary. An analysis of a method for approximate calculations of expecta- 
tion values for one-electron operators from available coupled cluster ampli- 
tudes is presented and illustrated numerically for the polarizability of the Be 
atom. The one-particle density matrix resulting from the present approach is 
accurate through the fourth order in the electron correlation perturbation. It 
has been found that, in order to obtain quantitative agreement between the 
energy derivative results and the approximate expectation value formalism, 
the third order TIT21,(°)> wave function term must be included into the 
calculation of the one-particle density matrix. The present method is also 
considered as a promising tool for calculations of higher-order atomic and 
molecular properties from high level correlated wave functions. 

Key words: Expectation value--Hellmann-Feynman theorem--Coupled 
cluster method--One-electron properties--Polarizabilities 

1. Introduction 

Suppose that a many-electron system with (unperturbed) Hamiltonian H ° is 
embedded in some perturbing field, so that 

H ° -~ H(~,) = H ° + &V (1) 

* Permanent  address: Department of Physical Chemistry, Comenius University, Mlynska Dolina, 
CS-842 15 Bratislava, Czechoslovakia 
** Permanent  address: Theoretical Chemistry, Chemical Centre, University of Lund, Box 124, 
S-221 00 Lund, Sweden 



30 M. Urban et al. 

where V is the appropriate perturbation operator and 2 defines its strength. 
Then, for the perturbed Hamiltonian H(X), the k-th order property, Q(*), of the 
given system is defined [ 1] as a quantity proportional to the k-th order derivative 
of the 2-dependent energy E(2): 

where 

Q(k) , , ,k,  1 f OkE(2)'~ 
~ , ~ x  / = _ _  / - - /  

k ! \  a,t, k )~=o' (2) 

e(x) = (v(x) In(x) I v(~) ) (3) 

and ~P(X) is the normalized (approximate or exact) solution of the perturbed 
Schr6dinger equation for the given value of 2. Equations (2) and (3) give the 
most general and the only correct definition [1-3] of Q(k). They amount to 
assuming that both the field-independent and field-dependent problems are 
treated in exactly the same way. The use of (2) to define Q(k) was advocated long 
ago [2, 3] and seems to have been generally accepted [4] in calculations of atomic 
and molecular properties. 

One should mention, however, that the definition of Q(k) in terms of the 
2-dependent energy (3) may lead to some formal problems for unbound pertur- 
bation operators. Though the energy (3) may not be well defined in such cases, 
each term in its perturbation expansion can be calculated. Hence, Eq. (2) should 
be understood as a definition of Q(k) in terms of a complete k-th order perturbed 
energy formula compatible with the given form of the approximate wave 
function. 

A direct differentiation of (3) shows that in general the evaluation of Q(k) 
requires the knowledge of all derivatives of ~P(2) up to and including the k-th. 
The well known [5] 2n + 1 rule which says that the evaluation of the (2n + 1)th 
order energy requires that the wave function is known to n-th order only, makes 
some assumptions that are rarely satisfied. This rule requires that all perturbed 
equations up to the n-th order are exactly solved. A weaker condition is sufficient 
for variationally determined wave functions; the 2n + 1 rule is satisfied provided 
all parameters for W which might be affected by the perturbation 2V are freely 
varied. For first-order properties this result is known as the Hellmann-Feynman 
theorem [6]. 

The Hellmann-Feynman theorem, and its consequences for higher than the 
first-order properties [ 1, 3], provides a useful and convenient computational tool 
which is frequently applied beyond the range of its validity [7]. If the given 
wave-function satisfies the Hellmann-Feynman theorem then 

(1) ,~ ~(1) = (~(o) 1 viqJ(°)) (4) H F T  ~ H F T  

where ~po= ~P(0). The higher-order properties can then be calculated as deriva- 
tives of the X-dependent values of the first-order energy (4), i.e. 

/Ok-1  \ 
Q~)~T ~ / _ _  E o) ~X~/ (5) t~#~k_ 1 HFTt 1 ) ) .  = 0 
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where 

E~I)~T(A) = <~(A) I VIV(A)> (6) 

and (o EnFr(0) is given by Eq. (4). In particular in the case of k = 2, which is 
considered in the present paper, one obtains from (5) 

Q(:) ~ <~P(I) I vl~(°)> + c.c. (7a) nFr 

while Eqs. (2) and (3) give 

Q(:) ~ O,(:)t S(O) _ E(o) l~e(o)> + O,(°)l n(°) _ e(o) I ~(:)> 

+ <V(')IH(O)-E(o)I~(,> + <~(,)Ivlv(O)> (7b) 

+ <v(°>l v lv( ' )>  

The two formulae give the same result if either 
(i) the zero-th and first-order perturbed equations are exactly solved, or 

(ii) q,<o) and ~(1) are determined variationally from the expansion of the energy 
functional (3). 
Obviously with the approximate solutions of the Schr6dinger equation 

approaching the exact ones, the difference between (7a) and (7b) becomes 
negligible. The same might be expected if ~p¢o) is determined variationally and 
lkI/(1) follows from some incomplete variational treatment in which the A-depen- 
dence of some parameters is neglected in a justifiable way. 

Since the evaluation of properties directly from Eq. (5) using approximate- 
high-quality wave functions is easier than the explicit calculation of derivatives 
(2), the differences between the numerical results from Eqs. (7a) and (7b) deserve 
a careful analysis. In the present paper this problem is studied for wave functions 
obtained within the coupled-cluster (CC) approach [8-10]. This is a continua- 
tion and extension of our recent study of approximate methods for the evalua- 
tion of expectation values of one-electron operators with CC wave functions [ 11]. 

2. The expectation value of one-electron operators for CC wave functions 

For the purpose of the further analysis, we assume that V is a sum of 
one-electron operators. This assumption covers most of the physically interesting 
perturbations [12]. The unperturbed many electron Hamiltonian is partitioned 
according to the single-particle approximation into its Hartree-Fock (HF) and 
its correlation components: 

H (°) = H~)e + v W  (°), (8a) 

where v is a formal expansion parameter. According to the CC formalism [8-10] 
the solution W(o) of the Schrrdinger equation with the Hamiltonian (8a) can be 
generated from the reference HF determinant ~ :  

~(o) = exp(T(O))~)F, (9a) 
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where 

T (°) = T~ °) + T~ °) + " "  (10a) 

is the cluster operator [8-10] for the unperturbed system. As long as the T (°) 
operator for an n-electron system contains all terms T~ °). • • T (°), the Hel lmann- 
Feynman theorem is satisfied and 

Q(,) = ~tl(X)ZFr = < ~ r [  exp(T(°)+) V exp(T (°)) [~)F>c, ( l 1) 

where the subscript c means that only the connected [8, 9] terms are retained in 
the diagrammatic representation of (11). 

Alternatively, the one-electron approximation and the respective partition of 
the total Hamiltonian can be introduced at the level of the ),-perturbed system 
[1, 13, 14] leading to 

H = Hzr(h) + vW(h) (8b) 

~1'(2) = exp{ T(h) }¢zF(h), (9b) 

and 

T(£) = TI(A) + 72(£) + ' - - +  T,(h), (10b) 

where (I)/¢F(2) is the h-dependent HF determinant which is built from the HF  
spinorbitals determined in the presence of the perturbation 2V. The cluster 
operator depends on 2 through its amplitudes. Each term in Eqs. (8b)-(10b) can 
be expanded into an infinite series in 2: 

H/~,e(h) -- H(°)ZF + 2H~)F + 22H~)F + " "  (12) 

W(h) = W <°) + 2W (1) + hEW (2) + -  • • (13) 

Tk(2 ) = T~ °) + 2T~ ') + 22T,~: 2) + - "  (14) 

and the CC energy formula [8-10] reads: 

E ( h )  = E H F ( ~  ) -1- <(I)HF(/~)[ W(~){TI(~ ) 1 2 +~T1(2) + T2(R)}I~MAh)> (15) 

The equivalence of Eq. (11) and the first-order derivative of E(2): 

E(,) = Q(1) = Eo)F + <@(~)F l W(°){TI ') + ½TI,)TIO) .-I- I T(0)']r'(1)2 Zl -*I -[- T(21)} 

+ W(,){T~O)+ T~O)2 _[_ "r(O)}Idh(o) \$/gh(1)IEv(O) 
Jt 2 j I ' . ~ H F / [ X Y H F I  vp, 

(o) (o) x {T~ °) + r~ °)2 + T2 }[(I),tF> + c.c.} (16) 

in the complete CC limit, shows that the relaxation terms [], 13, 14] which enter 
explicitly Eq. (16) must be contained in the operator 

[exp{ T (°) + } V exp{ T (°)}]c = V + T (°) + V + V T  (°) + T (°) + V T  (°) + .  • • (17) 

We recall that terms like (T (°)+) 2V, V ( T  (°)) 2, etc cannot form connected contribu- 
tions when V is a first order one electron operator and thus do not contribute to 
the expansion (17). 
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For a truncated form of the T operator, Eqs. (11) and (16) are no longer 
equivalent. One might expect, however, that the most important terms would be 
retained when T is truncated at a relatively low level, e.g. including only the first 
two or three terms of the duster expansion (10a). Indeed, it has been shown by 
Bartlett et al. [15] that the CC model with the T (°) operator approximated 
(CCSD approximation [9, 10]) as 

T (°) ~ T~ °) + T (°) (18a) 

is able to include most of the orbital relaxation effects for first- and second-order 
properties. This important result opens new possibilities [11, 15] for the evalua- 
tion of atomic and molecular properties by using the Hel lmann-Feynman 
theorem (6) combined with Eq. (11). 

It should be noted, however, that in molecules where triple excitations are 
important, the operator T(3 °) must also be included into the CC wave function, 
since its presence may have a significant effect on the amplitudes of the T~ °) and 
T [°) operators. This has been demonstrated numerically and explained theoreti- 
cally [11], on the basis of the relation between T (°) and the order to which the 
Hel lmann-Feynman theorem is satisfied. 

While evaluating (11) the infinite expansion (17) has to be truncated. In the 
previous paper [11] this truncation has been achieved by considering the formal 
orders of T(, °) with respect to the perturbation v W (°). If  the T (°) operator is 
approximated by 

T (°) - T~ °) + T (°) + T (°) (18b) 

(CCSDT approximation [9, 10, 16, 17]), the formula for the evaluation of QO) 
proposed in our previous paper [11] becomes 

Qo) = (~)FI(1 + T~O)+ T~2 o) + T~O)+ ½ T~O)T[O))+ 

! T(0) T(O)~ I O(o) \ (19) x 11(1+T~ ° ) + T  ( ° )+T  (°)+2 2 2,1 zF/ . .  

In the CCSD approximation (18a) the T(3 °) operators are removed from (19). 
The iterative solution of the CC equations [9, 10, 16, 17] shows that the T (°) 

operator is at least first-order in W (°) while T (°) and 1(3 o) are at least second-order 
in the correlation perturbation if canonical Hart ree-Fock reference wave func- 
tions are used. Hence, the wave function generated in the CCSDT approximation 
is accurate to second-order in W (°) and contains several contributions from 
higher-order terms. Hence, the approximate expression used in [l l] will be 
correct to third-order in W (°). According to Bartlett et al. [15], this expression 
simultaneously accounts for the majority of the self-consistency terms [13-15] 
whose contributions are explicitly indicated in Eq. (16). 

According to some exploratory calculations presented in our previous paper 
it appeared to be essential to consider the contributions of Q(1) to (19) accurate 
to fourth order in W (°). However, on adopting this criterion one finds that Eq. 
(19) must be augmented by the term which includes the third order wave 
function component T(o)-r(O)lm(O) \ ~t 1 .t 2 I " , , ~ H F / ,  

m(0) 7-(0) j_ T(0)+ VT(2 o) + h.c. l~)r> (20) 
~ H F I  Jt l T 
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Provided that the amplitudes are obtained from the full CCSDT method, the 
one-particle density matrix [11] is accurate to fourth-order in W ~°), within the 
approximation for the CC wave function given by (18b), using the truncation of 
(17) to the form used in Eq. (19) and adding the contribution (20). 

It should be stressed that the main objective of developing an approximate 
expectation value theory for CC wave functions is to make it competitive with 
the energy differentiation methods. This pragmatic criterion is used to investigate 
the validity of different truncated forms of the expansion (17). According to the 
numerical illustration given in the next section and our previous experience [ 11], 
adding the contribution (20) to the approximate expression for QO) (Eq. 19) 
results in a considerable improvement of the calculated expectation values. 

The calculation of expectation values of one-particle operators is not ex- 
tremely cumbersome even when using the energy derivative formulae [4, 15] and 
is not considered as the final goal of the present study. Once the expectation 
values can be computed accurately and fast enough from the approximate 
formulae, the standard finite-field perturbation methods can be used according to 
Eq. (5) for the calculation of higher-order atomic and molecular properties. This 
approach is illustrated in the present paper by calculating the dipole polarizabil- 
ity from the induced dipole moment. Values of the induced dipole moment are 
obtained from the approximate method described in this section. 

3. Numerical results, discussion, and conclusions 

The validity and numerical accuracy of the approximate eigenvalue expressions 
discussed in this paper have been investigated at the level of the CCSD and 
CCSDT models [9, 10, 16, 17]. In the later case only the approximate CCSDT 
approach known as the CCSDT-la method [9, 10, 16] has been employed. As an 
illustrative example, for both the theory and its application to calculations of 
higher-order properties, we have chosen the evaluation of the induced dipole 
moment for the Be atom in an external homogeneous electric field. Its value has 
been obtained from different approximate formulae for QO) and then used for 
the numerical (finite difference) evaluation of the dipole polarizability of Be. 
Simultaneously, the polarizability values have been calculated numerically as the 
second-order derivatives of the respective field-dependent CC energies. 

The application of the present theory to the calculation of induced dipole 
moments in Be offers certain advantages in comparison with our previous study 
of molecular multipole moments [11]. Since the correlation correction to the 
dipole polarizability of Be is quite large [ 18], the corresponding corrections to the 
SCF value of the induced dipole moment will be large as well. Hence, the relative 
importance of different terms of Eqs. (19) and (20) can be investigated in the 
range of rather large numbers. Moreover, the previous studies of the dipole 
polarizability of Be [18] have shown that the convergence of the MBPT correla- 
tion perturbation series is quite slow. The fourth-order MBPT result 
(~t = 38.42 a.u. [18]) is still considerably different from the estimated accurate 
value of the dipole polarizability of Be (~ = 35.7 to 37.7 a.u.). Thus, the 
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higher-order correlation effects which are accounted for in CC models make a 
non-negligible contribution to the beryllium atom polarizability. However, the 
contribution due to T~ °) can be expected to be very small if not negligible and in 
this case the CCSD model should perform almost as well as the CCSDT-Ia 
approximation. 

The numerical results presented in Tables 1 and 2 have been obtained with 
the [12.8.4] uncontracted GTO basis set employed previously in our MBPT 
studies of the dipole polarizability of Be [ 18]. This basis set gives the near-HF 
value of g at the SCF level and is capable of recovering most of the correlation 
contribution to the dipole polarizability of Be. The induced dipole moment and 
field-dependent energies have been computed for the electric field strength equal 
to 0.002 a.u. and the relevant data are shown in Table 1. 

The performance of the approximate expectation value formula (19) can be 
analysed in terms of the calculated dipole polarizabilities. The additional term 
brought in by Eq. (20) is by no means negligible and constitutes about 10 per 
cent of the total correlation correction to ~t. Its inclusion in calculations of the 

Table 1. Energies, induced dipole moments, and polarizabilities o f  Be in different approxima- 
tions calculated with the [12.8.4] GTO basis set. All values in a. u. 

M e t h o &  Energy b /./iCnd ~g d 

A B 

Correlation contributions 
MBPT(2) -0.066740 - -  - -  -4 .19  
MBPT(4) -0.083795 - -  - -  -7 .21  
T(4) -0.000156 - -  - -  -0 .01  
CCSD -0.087387 -0.01761 -8 .81  

-0.01604 - 8 . 0 2  -7 .98  
CCSDT-la -0.087768 -0.01744 - 8 . 7 2  

-0.01586 -7 .93  -8 .03  
Total 
SCF - 14.572845 0.09127 45.63 45.63 
SCF + CCSD - 14.660232 0.07366 36.82 

0.07523 37.61 37.65 
SCF + CCSDT-la - 14.660613 0.07383 36.91 

0.07541 37.70 37.60 

a MBPT(n) denotes the MBPT correlation contribution through the n-th order. 7"(4) denotes 
the 4-th order contribution due to triple excitations. CCSD and CCSDT-Ia denote the CC 
methods restricted to / '1  and T 2 o r / ' 1 ,  T 2, and approximate treatment o f / '3 ,  respectively. For  
details see [9, 10] 
b Calculated for the field strength equal to zero 
c Induced dipole moment calculated with the electric field strength equal to 0.002 a.u. The first 
value for each method corresponds to Eq. (19) while the second value includes also the 
contribution of  Eq. (20) 
d Dipole polarizability calculated as either the induced dipole moment  derivative (A) or the 
second-order derivative of  the field dependent energy (13). In column A the first value for each 
method is obtained from the induced moments calculated according to Eq. (19) and the 
second value includes the contribution from Eq. (20) 
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Table 2. Correlation contributions (in a.u.) to the expectation 
value of  the induced dipole moment (~) of  Be for the eiectric field 
strength of  0.002 a.u. in the CCSD and CCSDTqa approxima- 
tions 

Operator ~ /z 

CCSD CCSDT-Ia 

VT Z + h.c. -0.01625 -0.01602 
T~- VT~ 0.00054 0.00052 
T~  VT  2 -- 0.00437 -- 0.00445 
r~- vr3 -- o.ooooo 
T + T~  VT2T 2 0.00043 0.00043 
Unsymmetric b 0.00205 0.00207 
T~-T~- VT  2 + h.c. c 0.00157 0.00158 
Total - 0.01604 - 0.01586 

a V denotes the dipole moment operator 
b All other unsymmetric terms contributing to Eq. (19): T~  VT  2 in 
CCSD and T~- VT  2, T f  VT3, and T~- V T  2 T 2 in CCSDT, plus their 
h.c. 

Contribution of  Eq. (20) 

induced dipole moment brings the calculated polarizabilities into almost quanti- 
tative agreement with the energy derivative data. As could have been expected 
from a negligible fourth-order contribution of triple substitutions (T(4), Table 
1), there is only an insignificant difference between the CCSD and CCSDT-la 
results due to the particular shell structure of the Be atom. The corresponding 
differences will obviously be much larger for systems with three or more 
electrons occupying orbitals of similar energy and spatial distribution. 

A more detailed analysis of the different contributions to the approximate 
eigenvalue formula is given in Table 2. Naturally, the major part of the 
correlation contribution to # comes from V T 1  and T + V T  + , i.e. the lowest order 
terms. 

The present paper offers a relatively simple method to obtain one-particle 
density matrices from CC wave functions. The present formulae give the exact 
result to fourth order in the electron correlation perturbation. At the same time 
the CCSDT approach also guaranties the inclusion of a substantial part of the 
orbital relaxation. For less accurate wavefunctions, like MBPT(4), the analytic 
response form has been formulated previously [19]. 

The most promising application of the approximate method developed in this 
paper seems to be the calculation of higher order atomic and molecular proper- 
ties by combining the present analytic formulae with the finite field approach. 
Another possible application is the calculation of correlation corrections to 
molecular magnetic properties. By using the present formalism one can at least 
partly avoid the problems arising from the pure imaginary character of the 
relevant perturbation operators. 
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Finally, we note that some methods closely related to the present approach 
have been proposed by Bartlett and his co-workers [15, 19]. Also, the earlier 
formulation of the method for the evaluation of different properties devised by 
Monkhorst [20] has recently been extended by Stolarczyk and Monkhorst [21]. 
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